2024 State
of SaaS APls

Table of
Contents

Introduction

API Design

API Specifications
API Documentation
APl URLs

Data Centers

Authentication &
Authorization

Authorization

OAuth

OAuth2

AP| Key Format

API Key Location
OpenlD Authentication

Webhooks

Pagination

Conclusion

Glossary

Unified.to

Introduction

With more than 30,000 applications, the Software as a Service (SaaS) industry has
become increasingly dependent on sharing user data between applications through APIs.
Just as these SaaS applications have grown in complexity, the APIls have become more
specialized. For example, payroll functionality comes from HRIS APls, and sales
intelligence solutions rely on CRM APIs. We no longer build stand-alone products that
are entirely “home-grown” — instead, we build products on top of platforms, where APIs
are the connective tissue.

The report provides an in-depth analysis of the current landscape of Software as a
Service (SaaS) APIs across various industries. It explores key aspects of authentication
and authorization, API design, and the ways in which information is requested and
retrieved from APIs, shedding light on prevalent trends and practices within the API
ecosystem.

These insights, based on over 20 years of experience developing API integration
software, can help you make informed decisions about implementing or using APIs.
We’ve used these insights in developing our platform, which integrates APIs from 145
providers across several SaaS verticals into a single, unified API. We believe you’ll find
this document useful as you review SaaS application APlIs.

API Design

API Specifications

How are APIs documented, defined and shared?
The most common API specification formats:

1) OpenAPI and Swagger

These are specifications for describing RESTful APIs. It provides a detailed description of an
APl's endpoints, parameters, responses, and other details, and can be written in JSON or YAML
format.

2) Postman Collections

Designed for use with Postman, Postman Collection is an API specification that allows
developers to define APIs, share and execute API requests, create and model APl workflows,
and document and test APIs.

3) RAML (RESTful API Modeling Language)
This YAML-based API specification focuses on top-down APl modeling to describe APIs in a
clear, concise way. Its structure makes it useful for long-term planning for APIs.

4) API Blueprint
This is a high-level documentation authoring language for describing web APIs that uses
Markdown. As a result, it is easily readable by both humans and machines.

0% 5% 10% 15%

OpenAPI (v3) 15%

Swagger (v2) 15%

Postman Collection 4%

Supported API Specifications

Having an API specification makes it easier for
your APl consumers to integrate into your API.
SDKs, documentation, and tests can be easily
generated from a well-defined API
specification.

OpenAPIl and Swagger are the most
supported API specification formats.

State of SaaS APIs Report - Unified.to

06

APl Documentation

There are two ways to create APl documentation:

1) Manually: Initially, APl documentation was often manually created. This involves
writing detailed guides, example requests and responses, and instructions for
integrating with the API. Although this approach allows for a high degree of
customization, it can be time-consuming to maintain and update, and the process is
tedious.

2) Using automated tools: Tools like Swagger, Apiary, and Postman can automatically
generate documentation from the API's codebase or from an API description file. The
documentation generated by these tools is interactive, allowing developers to make
API calls directly from the documentation to see real responses.

Some large language models are proficient at generating documentation from
codebases, and it should be expected that Al will soon be integrated into automated
API documentation tools.

While there isn’t much data on the topic, it has been our experience that 50% of the
API documentation we have encountered is either out of date or inaccurately
describes the current API.

URLs

A URL, short for Uniform Resource Locator, which most users commonly understand as
the location of a web page. In the context of APIs, URLs uniquely identify resources on
the server, where “resource” could be anything the API provides access to, such as a
user, a photo, a document, or other data. Each resource has a specific corresponding
URL that clients can use to access it.

URL
Types

Static Base URLs

A static base URL is a fixed URL that serves as
the root address for accessing the API. It does
not change across different customers or users
of the API.

Custom Domain/Subdomain-based URLs

Custom domain or subdomain-based URLs allow
the base URL of the API to be customized for
individual customers or users, often using their
domain name.

Versioned URLs

As a service evolves, so will the functionality and
data it provides. This often leads to changes to
the API, which will need to provide different URLs
for new or updated functionality.

M %
100

URL Usage

Static base URL at 93% is the most popular and
widely used API URL.

This indicates most APIs utilize a consistent and
unchanging base URL for accessing their
resources. Those URLs that are customer or tenant
specific potentially offer more security, but are
harder to implement as an application needs to ask
the end-user to retrieve it.

Static Base URL Custom Subdomain URL

State of SaaS APIs Report - Unified.to 10

Versioned URLs

72% of APIs have versioned URLs

Versioning in a URL is key to advanced API
design, ensuring backward compatibility,
clear communication, and secure, targeted
updates without disrupting current users. It
facilitates parallel development and planned
upgrades, allowing for a clear deprecation
path and client-controlled adaptation.

This strategy enhances flexibility for future
improvements while maintaining a stable and
robust APl environment, accommodating
experimentation and feedback effectively.

No Versioned URLs
28.4%

Versioned URLs

71.6%

State of SaaS APIs Report - Unified.to

1

Data Centers

A data center is a dedicated facility used to house computer systems and
associated components, such as telecommunications and storage systems.
It provides critical services including data storage, backup and recovery, data
management, and networking. Data centers are essential for ensuring the
continuous operation of application and providing connectivity to end-users.
For the context of APIs, data centers can be categorized based on their
geographical location or purpose.

Types of Data Centers

EU Data Centers: Located within the European Union, these data centers comply with EU
regulations on data privacy and security, such as GDPR, ensuring that data handling
practices meet stringent EU standards.

US Data Centers: Situated in the United States, these facilities are subject to U.S. laws and
regulations, providing services primarily to American companies and users.

Sandbox Data Centers: These are testing environments where developers can
experiment with APIls without affecting production data. Sandbox data centers simulate
real-world operations, allowing for the safe testing of new features, bug fixes, and
integrations.

Production Data Centers: These are live environments where APIs are deployed for actual
use by clients and customers. Production data centers support real transactions and data
processing, ensuring the availability, performance, and security of live applications and
services.

Data Centers

How many data centers do APIs have?

The majority of APIs utilize only one API
URL representing a single purpose or
geographical location.

2+
6.6%

93.4%

Authorization and
Authentication

Basic Authentication (Username and Password)

The simplest scheme for securing an APl is basic authentication, where the client
authenticates itself with the server by including two text strings with every request:

« A username, which is who the client claims to be
« The corresponding password, which is a shared secret that proves that the client is
who they claim to be

As part of the HTTP specification, basic authentication was meant as a simple way to
grant website access to individual users. As a result, it can be used to identify the user
making a request, but not the application they are using. Because this scheme identifies
only users and not applications, it is a poor choice for controlling APl access.

Basic authentication is the easiest authentication method to implement, but also the
easiest to compromise. The username and password are sent as plain text as part of the
request header, making it unsuitable for securing an API. A malicious party can easily get
these credentials, allowing them to impersonate an approved client, or insert themselves
between the client and the server to perform a “meddler-in-the-middle” attack.

API Key Authentication

APl key authentication was designed to work around the limitations of basic
authentication for APl access. In this scheme, the client identifies itself to the server by
providing a single text string — an APl key — to identify the application attempting to
access the API.

In a sense, APl key authentication inverts the approach that basic authentication uses:
instead of identifying the user accessing the API, it identifies the application. This
approach simplifies the process of granting APl access to a program or service and
avoids the credentialing problems that arise with changes in staff. It also makes it
possible for an API provider to track client usage and charge them accordingly.

This is a simple authentication method, which is why it is the most prevalent,
accounting for over half (52%) of all authorizations.

The API key is typically stored either in the application’s source code (which creates
security risks) or in a configuration file. As a result, most API keys are accessible only by
administrators.

API Key + Secret Authentication

This is a more secure variant of APl key authentication, where the application provides
not just an API key, but also a secret — a text string known only to the client and the API.
The API key identifies the application, and the secret is used as proof that the calling
application is what it claims to be.

Unlike the password in the basic authentication scheme, the secret is not directly
included in the request. Instead, the calling application uses the secret in combination
with other information from the request to generate a cryptographic signature that is
then included in the request. The API server recalculates the signature using the same
algorithm and the information it receives from the application to confirm that it is
receiving requests from an approved client application.

OAuth2

OAuth2 is the industry standard method for authorization defined by the Internet Engineering Task
Force (IETF). It enables a third-party application to obtain limited access to a user's resources hosted
on a server, without exposing the user's credentials to the third-party application. It is the preferred
method for allowing secure and controlled access to web APIs. In exchange for security, OAuth2
introduces complexity by defining the following roles and objects:

« Resource Owner: This is the user or application who owns the data or services — the resources
— and wants to grant access to them to a third-party application.

« Client: This is the third-party application requesting access to the protected resources on behalf
of the resource owner.

« Authorization Server: This is a server responsible for authenticating the resource owner and
issuing permission in the form of access tokens (see below) to the third-party application (the
Client) to access the resources after the Resource Owner grants authorization. It performs two
important security tasks: verifying the identity of the Resource Owner and confirming that the
Client is authorized to access the requested resources.

« Resource Server: This is the server hosting the resources that the Client wants to access; in
other words, it houses the API. The Resource Server validates the access tokens presented by
the Client, granting access to the requested resources if the tokens are valid.

« Access Token: An access token is a credential representing the authorization granted to the
client by the resource owner. The client presents this token to the resource server to access the
protected resources. Access tokens are short-lived and typically have limited scopes, which are
permissions for access to specific resources and actions granted to the Client.

OAuth2 Con’t

It should be noted that Access tokens are bearer tokens, which means that the token is not
tied to a specific user or client; whoever holds the token can use it. If an unauthorized user
were to get their hands on an access token, they could gain unauthorized access to the
Resource Server and its APlIs.

To mitigate the risks posed by compromised access tokens, an access token can be
assigned a limited lifetime, after which it is invalid and will not be accepted by the Resource
Server. This lifetime is specified in seconds and can be as short as one second and be as
long as weeks.

When a Client’s access token expires, it can no longer call the APl on the Resource Server.
The Client needs a new access token, which it can acquire in a couple of ways:

1) The Client can ask the User for authorization to call the APl on the Resource Server. This
requires the User to log in again, which is inconvenient, especially if the access tokens are
short-lived

2) If the Authorization Server supports them, the Client can request a refresh token in
addition to an access token. When the access token expires, the Client can send the
refresh token to the Authorization Server, which will return a new access token in response.
The Client can do this behind the scenes without having to ask the User for authorization.

The OAuth2 authorization flow is illustrated in the diagram below:

(Resource owner)

1. Client app requests authorization from user

2. User grants authorization

Client

(Application) 3. Client app presents its ID, user’s authorization, Authorization server
and scopes to be requested from resource server

>
4. Authorization server issues access token
0_(\ and optional refresh token

API
(Resource server)

5. Client app presents access token
>
6. Resource server serves requested resource

B OAuth2] APIKey [APIKey & Secret . .
Authorization Methods

[Username & Password

APl keys are the most prevalent authorization
method, accounting for over half (52%) of all
authorizations.

OAuth2 is also widely adopted, representing
39% of authorization technology. OAuth2’s
flexibility and added security features make it
an increasingly popular choice among API
providers. The following page explores the
differences between each method.

State of SaaS APIs Report - Unified.to 22

Deciding between OAuth2 and API Key

From a customer-centric perspective, OAuth2 is undoubtedly the preferred
authorization method. OAuth 2 is easier for end users as it displays a familiar
authentication screen hosted by the source app. However, it’s more difficult
to configure for developers as it requires apps to intially be registered with
the source app.

From a developer-perspective, APl keys are the easiest authorization method
as it requires zero configuration. However, end-users are required to locate
their API keys in source applications, which are usually only accessible to
admin users. This creates friction in the adoption of product integrations.

OAuth2 + OpenlID Connect (OIDC)

OpenlD Connect (OIDC) adds authentication to OAuth2, allowing a Client to
confirm the identity of the end user based on authentication that the
Authorization Server performs. It is defined by the OpenlD Foundation, a non-
profit organization that promotes, protects, and nurtures the OpenlD
community and technologies.

With OIDC, the Authorization Server also provides an ID Token, which contains
information about the authenticated user, such as their unique identifier, email
address, and optionally other user attributes and metadata.

The diagram below illustrates how OAuth2 and OIDC interact:

(Resource owner)

1. Client app requests authorization from user

>

2. User grants authorization

Client

(Application) 3. Client app presents its ID, user’s authorization, Authorization server
and scopes to be requested from resource server
>

4. Authorization server issues access token, ID token

and optional refresh token
—Q
5. Client app presents access token 0
>

6. Resource server serves requested resource

API
(Resource server)

A

0% 20% 40% 60% 80%

v2 (3-legged) 94%

v2 (2-legged) 5%

V1 | 2%

OAuth

This section reveals insights into the adoption of
different types of OAuth versions. Authorization
involves the verification of an individual or
system's identity and credentials to gain
authorized access to resources or perform
specific actions within a third-party system.

OAuth2 using the 3-legged authorization flow
is the most commonly used OAuth
authentication method by developers,
representing 94% of all OAuth authentications.

However, it poses a greater challenge for the
requesting application, which must initially
register their application with the third-party
system before being able to authorize end-user
accounts.

State of SaaS APIs Report - Unified.to

26

OAuth2 Token Endpoint

This section delves into the various methods
used for authorizing OAuth2 requests and
analyzes the distribution of these methods
based on our dataset. OAuth 2 requests using
POST-Form authorization, where data is sent
in form parameters, dominate the dataset
with 79% usage.

POST-JSON: In this method, authorization data
is sent within the request body using JSON
format. It accounts for 19% of OAuth2
authorizations. POST-JSON offers better
security compared to GET parameters as it
keeps sensitive data out of the URL.

URL parameters: This method involves sending
authorization information within the URL's query
parameters. It is used in 2% of OAuth2
authorizations. This method can be less secure
due to potential exposure of sensitive data in
URLs.

Get URL Parameters

1.7%
POST-JSON

19%

POST-Form
79.3%

APl Key/Token Formats

How are APl keys/tokens sent to APIs?

The "Bearer" format is the most widely used API
Key authorization format, accounting for the
majority at 69%.

This is due to its use by OAuth2 APIs.

It is a common approach where the API token is
included in the HTTP request headers, typically as
an "Authorization" header, preceded by the word
"Bearer."

70%

60%

50%

40%

30%

20%

10%

0%

State of SaaS APIs Report - Unified.to

28

URL parameter
9%

API Key Location custom (X-?)
16%

Authorization header is the most popular
location for an API key.

The Authorization header is the standard way to
provide access credentials, but 25% of APIs in our
dataset are not following this standard.

Authorization
75%

es Sign in with Asana

@ Sign in with Discord

{ Sign in with Google

" Sign in with HubSpot

3 Sign in with Linkedin

B® Sign in with Microsoft

OpeniD Authentication

OpenlD Connect, a component of the OAuth2
specification, enables the requesting system
to obtain the authorized user's identity
information, such as their name and email.

APIs that incorporate OpenlD simplify the
implementation of a "Sign in with [platform
name]" button or link.

Only 35% of OAuth2 APIs support OpeniD
Authentication.

Webhooks

Webhooks

Webhooks, also known as web callbacks or push APIs, are automated
messages sent from an application or server to instantly notify another
application or server when a specific event occurs. They send real-time data
in response to events, allowing for immediate reactions to specific triggers.
Webhooks offer a flexible and efficient method for building interconnected,
responsive systems that can automatically exchange information and perform
actions in real-time based on specific events.

Webhooks are recommended over traditional REST APls in scenarios where
timely, event-driven notifications are necessary. For example, webhooks can
automate system notifications for status changes in an application,
eliminating the need for manual polling. They simplify synchronization
strategies by delivering up-to-date data to applications.

How Webhooks Work

1) Event trigger
A webhook is configured to listen for certain events in an application, such as a new user
registration, an update to a candidate in an ATS, or the creation of a new deal in a CRM.

2) Notification

When the specified event occurs, the application sends a webhook payload, usually in
JSON or XML format, to a URL configured to receive the messages. This URL is an
endpoint on a server prepared to handle the incoming data.

3) Action

The receiving server processes the incoming webhook payload and performs a
predefined action, such as updating a database, sending an email, or triggering another
workflow.

Handling Webhook Failures

Retry mechanisms: Many services implement automatic retry policies for their webhooks.
If a webhook fails to reach its destination because the receiving server is down or
unreachable, the sending server might retry the request several times over a
predetermined period. Some services use exponential backoff in their retry strategies,
gradually increasing the interval between retries in order to reduce the load on the
receiving server when it comes back online and avoids creating a denial-of-service
condition.

Alerts: The sending service might notify the sender (via email, dashboard alert, or other
mechanism) that a webhook delivery has failed. This allows developers or administrators
to investigate and resolve the issue on the receiving end.

Logging and monitoring: Webhook transactions, including failures, are often logged.
These logs can be crucial for debugging and understanding what went wrong. Monitoring
tools can alert teams to repeated failures, indicating a problem that needs attention.

Dead letter queue (DLQ): Some systems implement this mechanism where failed
webhook calls are stored for later processing. Once the issue with the receiving server is
resolved, the queued webhook messages can be retried manually or automatically.

Native Webhook Support

Native
1M.4%

88.6%

Only 11% of API providers have built-in
support for native webhooks, which
forces developers to implement their
own polling strategies.

In the absence of native webhooks, API
consumers are required to develop
sophisticated strategies and establish
infrastructure for scheduled data polling.
This entails managing rate-limiting and
addressing various error scenarios.

Pagination

Pagination

When an API returns a lot of data in response to a request, retrieving and processing all of
this data at once can be inefficient, slow, and resource-intensive for both the server and the
client. Pagination helps to alleviate these issues by allowing clients to request data in small
sets or “pages,” making data retrieval more manageable and improving the overall
performance and usability of the APl. The common methods include:

Offset Pagination: Divides large datasets into "pages," letting clients skip a set number of
records (offset) and define a maximum number of records to return (limit).

Page-based Pagination: Segments data into numbered pages for sequential navigation,
enhancing user experience by abstracting data ranges into an intuitive sequence.

Page-token Pagination: Uses a unique token for data retrieval, ideal for constantly updating
datasets, ensuring efficiency and reliability. Also known as token-based, sync-token, or
cursor pagination.

Next-URL Pagination: Incorporates a direct link to the next set of results within the API
response, streamlining the request process for clients.

None
14.9%

Offset
24.8%

Next-URL
7.9%

Page-token
10.9%

Page-based
41.6%

Pagination

How do APIs structure paginated data?

Paging is the most common pagination
method, which involves specifying a page
number to access specific portions of
pagination data.

State of SaaS APIs Report - Unified.to

38

PAGINATION

METHOD

OFFSET

PAGE

PAGE-TOKEN

NEXT-URL

NONE

Precise control over the data range retrieved
Easy to implement and understand

Simpler to use than offset, as it focuses on
pages rather than specific offsets
Suitable for smaller datasets

Efficient for large datasets, as it provides a
stable reference point

Supports resuming pagination without losing
data integrity

Allows for straightforward navigation with well-
defined URLs
Easy to implement

Simplest approach with no pagination logic to
implement
Suitable for small, fixed-size datasets

Inefficient for large datasets since it requires
scanning through previous pages.

Vulnerable to performance issues with increasing
offset values

May still suffer from performance issues with very
large datasets

Not ideal for maintaining a consistent view if data
changes between paginations

Requires more complex implementation
May require additional storage for page tokens

Depending on the API design, URLs may become
unwieldy with deep nesting

May lack support for efficient random access to
specific pages

Unsuitable for handling large datasets efficiently
May result in slow performance and increased
bandwidth usage

Conclusion

Application development has become increasingly complex over recent years, not solely due to the
growing number of APIs that developers need to interact with but also because of the increasing
complexity of the APIs themselves.

Modern applications often rely on a diverse set of external services, from universal ones such as
authentication/authorization and cloud storage to task- and industry-specific services such as HR and
CRM. Each of these services comes with its own API, and each API features its own endpoints, data
formats, authentication mechanisms, approaches to pagination, and other implementations. The sheer
variety and complexity of integrating these disparate systems can significantly increase development
time, elevate the risk of bugs, and complicate maintenance efforts. As APIs evolve, keeping up with
changes in their specifications requires ongoing vigilance and effort from development teams.

API unification services can be a game-changer for developers. These platforms act as intermediaries
between your application and all the external APls it uses, providing a simplified, single interface for
integration. By abstracting away the differences between individual APIs, these solutions can
drastically reduce the complexity of dealing with multiple services, streamline the development
process, and improve maintainability. They also often offer additional features like unified analytics,
centralized error handling, and cross-AP| data normalization, further enhancing developer productivity
and application reliability. As the landscape of web services continues to grow in both size and
complexity, leveraging an API unification SaaS can be a strategic move to keep development efficient
and focused.

List of APIs examined in this report: https://unified.to/integrations

https://unified.to/integrations

Glossary

Access Token
A piece of digital information that authorizes the person or application possessing it to access
specific data or functionality on a given system.

API

Application Programming Interface — a set of functions that allow one application to use the
functionality of another application, just as a user interface allows a human user to use the
functionality of an application.

API Blueprint
An authoring language based on the Markdown markup language for describing web APlIs.

Authentication

The process where a person or system verifies that they are who they claim to be; essentially
answers the question “Who are you?” Often used in combination with (and confused for)
authorization. Sometimes shortened to AuthN.

Authorization

The process where a person or system is given the ability to access a resource or perform an
action; essentially answers the question “What are you allowed to do?” Often used in combination
with (and confused for) authentication. Sometimes shortened to AuthZ.

Glossary

Bearer Token
A piece of digital information that authorizes the person or application possessing it to access
specific data or functionality on a given system.

Data Center
A physical location containing computer systems and their components that provide computation
and data storage services.

Data Residency
The physical or geographical location of an individual or organization’s data.

Data Sovereignty
The concept of a country or other jurisdiction’s rights and control over data within its borders.

HTTP
Hypertext Transfer Protocol, which defines how resources are fetched and accessed over the
internet, and primarily the World Wide Web.

ID Token
A piece of digital information that proves that a user has been authenticated.

OAuth2
Short for OAuth 2.0, an interaction standard that allows a website or application to access
resources hosted by other web apps on behalf of a user.

Glossary

OpenAPI
A programming language-agnostic specification language for defining the structure and syntax of
HTTP-based APIs.

OpenlD Connect
A protocol built as a layer OAuth2 to authenticate users. Often shortened to OIDC.

Pagination
An approach used by APIs that allows clients to request data in small, easier-to-consume amounts
instead of receiving the data as a giant set.

RAML
RESTful APl Modeling Language, a YAML-based language for defining an APl in a top-down fashion.

REST
REpresentational State Transfer, an architectural style for developing web services that is based on
HTTP.

URL
Uniform Resource Locator, a reference to a resource that specifies its location on a computer
network and a mechanism for retrieving it. Colloquially known as a “web address.

Webhook
An automated message sent from an application or server to instantly notify another application or
server when a specific event occurs.

State of SaaS APIs Report - Unified.to 43

About Unified.to

Unified.to is an award-winning unified APl development platform for B2B SaaS,
covering 150+ industry-leading APIs across HR, Recruitment, Sales, Marketing,
Authentication and more. With Unified.to, software companies integrate once
to access their customers’ hiring, selling, and workforce data from multiple
systems to enable automation, insights, and better user experiences for the
customers they serve. Software companies like Checkr, Cognism, Humi, and
Sailes trust Unified.to to power their APl integrations.

Unified.to is founded by Roy Pereira (CEO) and Alexey Adamsky (CTO), serial
entrepreneurs and technologists with 20+ years of APl integration experience.

Contact
hello@unified.to
www.unified.to

mailto:hello@unified.to
http://www.unified.to/

